Optimized conditions for gas light interaction in photonic crystal fibres [7653-134]
نویسنده
چکیده
This paper presents helpful expressions predicting the filling time of gaseous species inside photonic crystal fibres. Based on the theory of diffusion, our gas-filling model can be applied to any given fibre geometry or length by calculating diffusion coefficients. This was experimentally validated by monitoring the filling process of acetylene gas in several fibre samples of various geometries and lengths. The measured filling times agree well within ±15% with the predicted values for all fibre samples. In addition the pressure dependence of the diffusion coefficient was experimentally verified by filling a given fibre sample with acetylene gas at various pressures. Finally ideal conditions for gas light interaction are determined to ensure optimal efficiency of the sensor by considering the gas flow dynamics in the design of microstructured fibres for gas detection and all-fibre gas cell applications.
منابع مشابه
Photonic crystal fibres for chemical sensing and photochemistry.
In this review, we introduce photonic crystal fibre as a novel optofluidic microdevice that can be employed as both a versatile chemical sensor and a highly efficient microreactor. We demonstrate that it provides an excellent platform in which light and chemical samples can strongly interact for quantitative spectroscopic analysis or photoactivation purposes. The use of photonic crystal fibre i...
متن کاملThermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber
we investigate the temperature-dependences of the Brillouin frequency shift in three different kind of single-mode fibers using a heterodyne method for sensing temperature. Positive dependences coefficients of 0.77, 0.56 and 1.45MHz/0C are demonstrated for 25 km long single-mode fiber, 10 km long non-zero dispersion shifted fiber and 100 m photonic crystal fiber, respectively. The results indic...
متن کاملAnalytical modeling of the gas-filling dynamics in photonic crystal fibers.
We present useful expressions predicting the filling time of gaseous species inside photonic crystal fibers. Based on the theory of diffusion, this gas-filling model can be applied to any given fiber geometry or length by calculating diffusion coefficients. This was experimentally validated by monitoring the filling process of acetylene gas in several fiber samples of various geometries and len...
متن کاملMulti-Line Fit Model for the Detection of Methane at ν2 + 2ν3 Band using Hollow-Core Photonic Bandgap Fibres
Hollow-core photonic bandgap fibres (HC-PBFs) have emerged as a novel technology in the field of gas sensing. The long interaction pathlengths achievable with these fibres are especially advantageous for the detection of weakly absorbing gases. In this work, we demonstrate the good performance of a HC-PBF in the detection of the ν(2) + 2ν(3) band of methane, at 1.3 μm. The Q-branch manifold, at...
متن کاملInvestigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures
In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect and waveguiding behavior of electr...
متن کامل